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A numerical procedure is presented for the calculation of internal tides generated by
the interaction of surface tide with bottom topography which is tangent to the direction
of internal tidal energy propagation at some depth. This procedure, together with
that of Baines (1973), permits the calculation of internal tides generated by (virtually)
arbitrary topography with horizontal scale greater than 1 km, and a wide range of real-
istic density stratifications.

The procedure is applied to continental slopes with simple linear and quarter-
circle profiles, and constant stratification. For these cases, the largest internal tidal
velocities and energy densities occur in regions around characteristics emanating from
the tangential corner point; on the shallow shelf side the energy flux is a maximum in
this region, but on the deep side it is a minimum and is distributed more evenly with
depth. The total energy flux is greater than the maximum for flat-bump topography of
comparable height by a factor of order 2-3. Itincreases nearly exponentially with height
but is less sensitive to shape provided the slope is greater than critical, and is greater
on the deep than on the shallow side by a factor of order 10. Calculations for more
realistic density stratifications yield similar results.

The procedure is also applied to a real continental slope for which observations have
been made by Wunsch & Hendry (1972), with stratification representing summer and
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28 P. G. BAINES

winter conditions. The velocity fields and associated energy fluxes differ significantly
from those of simple geometries, and are also sensitive to the seasonal density changes
in the upper 50 m.

Itis suggested that internal tidal generation will give rise to two mixing processes, one
associated with the boundary layer near the tangent point and the other with shear
instability in the velocity profile. Instability of the theoretical profiles according to the
Richardson number criterion may be readily achieved in oceanic conditions.

The reflexion of an internal wave from a concave corner is discussed in an appendix,
where it is shown that no singularities occur unless the radius of curvature is very large.

1. INTRODUCTION

Recent observations (Wunsch & Hendry 1972; Gould & McKee 1973) show that internal
tides have large amplitudes over continental slopes. In the deep sea the observed amplitudes are
somewhat smaller (see, for example, Fofonoff & Webster 1971), although internal tides of con-
siderable amplitude have been observed over the mid-atlantic ridge (German North Atlantic
Expedition 1938; see Defant 1961). These and other observations reinforce the notion that these
waves are due to the interaction of the surface tide with bottom topography. An alternative
resonance mechanism suggested by Krauss (1966) seems unlikely in view of the magnitude of
dissipation (Le Blond 1966).

There have been three different approaches to the problem of generation by topography.
Firstly, the topographic variations may be regarded as small perturbations on a horizontal
bottom, so that the internal tide is driven by a linearized surface force. This method has been
used by Cox & Sandstrom (1962), and applied by Munk (1966) and Bell (1973) to estimates
of energy fluxes from random abyssal topography with given spectral distribution. Secondly,
step-like topography has been treated by the method of horizontal matching of modes by Rat-
tray, Dworsky & Kovala (1969) and Prinsenberg (1971). The third approach is to regard the
internal tide as driven by a body force as described in Baines (1973). In the latter, a formalism
is developed which is applicable to two-dimensional topography of arbitrary shape which is
nowhere tangential to the local ray or characteristic for tidal frequency (i.e. ‘flat-bump’ topo-
graphy). This theory is extended here to (almost) arbitrary topography and density stratifi-
cations. It is essentially two-dimensional in character but is applicable to three-dimensional
topography where the radius of curvature is greater than the horizontal excursion of water
particles in tidal motion, a distance of the order of 1km.

The formulation of the generation problem for the simplest prototype case leads to what is
believed to be a novel mathematical problem defined by equations (3.3)—(3.8). These equations
are solved by a numerical iteration scheme described in §3, and the means by which it may be
generalized to more complex topography and stratification are described in §4. With minor
modifications the theory is also applicable to problems concerning the reflexion and transmission
of internal waves encountering the same topography.

The wave fields generated at steep continental slopes with linear and quarter-circle profiles
with constant stratification are discussed in detail in §§5 and 6, and compared with the cor-
responding results for ‘flat bump’ slopes. For linear slopes with slope s and characteristic slope ¢,
the wave field undergoes an abrupt change in amplitude as s/c increases through unity, increasing
on the deep right-hand side (hereafter denoted r.h.s. and similarly Lh.s. for the shallow left-
hand side) but with essentially the same shape, and decreasing on the L.h.s., again with similar
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INTERNAL TIDES OVER CONTINENTAL SLOPES 29

shape. The total generated energy flux increases by a factor of order 2-3, depending on topo-
graphic height. However, for s/c greater than about 2 there is little change in the wave field and
energy fluxes. As for the flat-bump situation there is a near exponential increase in the generated
wave field with topographic height.

As expected from results of Baines (1971), a strong singularity in velocity develops on the
tangential characteristic, whose strength increases with increasing topographic radius of curva-
ture at the tangent point. Since this implies large vertical motions close to the boundary in this
region it seems likely that this will give rise to significant mixing in the boundary layer. This
mechanism, together with that associated with possible shear instability in the generated internal
wave profile, is discussed in § 7.

In §8 the foregoing theory is applied to a practical case, namely the north-west Atlantic
continental slope in a region where measurements have been made by Wunsch & Hendry (1972),
for two density stratifications representing summer and winter conditions. The generated velo-
city fields have more detail than those for the simpler topographies of §§5 and 6 because, over
a considerable range of depths, s/¢ has values near unity, rendering the wave field sensitive to
smaller-scale topographic features in this region. It is also sensitive to density changes (seasonal
and otherwise) in the top 50 m or so because the horizontal excursions of the rays or characteris-
tics may be quite large here. The velocity measurements of Wunsch & Hendry are compared
with the theoretical wave field but do not provide a good test of it. The total theoretical energy
flux from the slope in the M, internal tide is of the order of 0.2 Js~*cm™? of slope length. Per
unit area of the slope, this is comparable with the energy flux calculated by Bell (1973) from a
mid ocean region of abyssal hills with a r.m.s. height of 109 m. The reason for this similarity is
that the energy fluxes depend on the square of the barotropic tidal velocity, which is typically
5 cm/s for the latter and 0.44 cm/s for the former, normal to the slope. Thisindicates that although
the continental slopes are probably the most effective and coherent generators of internal tides
in the ocean, their relative importance compared with abyssal topography is reduced because
the normal barotropic velocities are frequently small due to the presence of the adjacent coastline.

2. Basic EQUATIONS AND FORMULATION OF THE GENERATION PROBLEM

A summary only of the relevant equations is given below, since the equations and notation
for the internal wave motion and the barotropic tide are the same as in Baines (1973), to which
the reader is referred for more details. Taking the equations governing the internal tides to be
those of a rotating stratified inviscid fluid and assuming that they are linear for tidal phenomena
yields

u A
Pog; TPof Xt +Vp+pgZ =0,
(2.1)

o, dpy _ o
6¥+w—d—£—0, VU—O,

where u is the fluid velocity, f the Coriolis parameter, f,, p, the pressure and density in static

equilibrium, p, p the perturbations from this state due to the wave motion, g the acceleration

due to gravity, ¢ the time variable and 2 the unit vector in the upward vertical direction. We next

write © = u, + Ui, p = p; + pi where uy, p, denote the flow field for a corresponding unstratified

ocean of density p,, the mean of p,, which has the same surface displacement as the one being
4-2
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30 P. G. BAINES

considered. In order to determine the internal tide u; one must first observe or calculate the
barotropic tide w, which satisfies
%t%+fxu1+l%Vpl+g§ =F, (2.9)
V-u, =0,

with boundary conditions

u,-V(z+h(x)) =0, on z=—~h(x), }

(D/Dt) (z—9(x,8)) =0, on z=17y(x,t),

where F is the tide-generating force, # the tide surface height, x and z horizontal and vertical
coordinates respectively and z = — /() is the equation of the ocean bottom. For semi-diurnal
tides over continental slopes it may readily be shown from considerations of scale that, to a
good approximation, , is a function of x and ¢ only and

O(hu,)[0x = 0, (2.4)

so that we may write hu, = Q cos wt, (2.5)

(2.3)

where the volume flux @ is a constant and w is the tidal frequency. Considerations of continuity

then yield that
w(x,z,t) = — Qz(1/h), cos wi, (2.6)

where the suffix denotes a derivative. In many practical cases of continental slopes we will have
Q ~ aywd,

where 4 is the width of the continental shelf and ¢, is the amplitude of the surface tide at the
coastline. Subtracting equations (2.2) (in linearized form) from equations (2.1) yields

ou; 1 pg%
+fxui+=Vpi+—=- = 0,
ot Y Po 4 Po
PV dp dp, dpy _ :
\Y u; = 0, a_t+wl_d—z’——w1$ = U. (27)

Defining the stream function ¥ by

U = _wm Wi = wxa (2'8)
then giVCS % wtt + N2 'ﬁwz +f2¢zz == NZ(Z) Wigs (2'9)
where N2 = -——é%,
po dz

with the boundary conditions Yy=0 on z=0, } (2.10)

=0, on z=—h(x).

The origin is taken at the free surface, the latter being regarded as stationary as far as the internal
wave dynamics are concerned. From equations (2.6) and (2.9) we obtain the field equation

Vzlﬁtt + Nzl/fa:x +f2¢zz = QNz(Z) Z(llh)wm COs wt’ (2’11)
for the internal tidal motion. For solutions at the tidal forcing frequency only we may write
=W (x,z)e 1t (2.12)

Co Q 1 w?—f?
—¢? =2 = DR
which yields VYor—2(2) ¥, g Vel ( h).m:, ¢ == ‘ (2.13)
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INTERNAL TIDES OVER CONTINENTAL SLOPES 31

In order to solve this equation we first obtain a particular solution ¥,, which has the form

Q z
Yo = o TN (2.14)

This is exact for constant N2 and a good approximation for oceanic situations at tidal frequencies.
We then write VoW, 4w, (2.15)

and want to solve the homogeneous form of (2.13) for ¥, such that the boundary conditions
(2.10) and the appropriate radiation conditions on the internal waves are satisfied, namely

Y3=0 on z=0,

Y, = Q(1+1—T%/TJ§) on z= —h(x). (2.16)
If ¢(z) has the form ¢ =¢y (1+¢,2)% (2.17)
where ¢y, ¢; are constants, the general solution for ¥, is
¥y = (2 (f(§) +¢(n), (2.18)
where f, g are arbitrary functions of the characteristic variables
£ = z(—lf+x, 7 =fzé§—x.
0 ¢ 0 ¢

Henceforth it will be assumed that the density stratification has this form. Arbitrary density
distributions may be approximated by piecewise sections satisfying (2.17), as discussed in §4.
Modes in a channel of depth #;, have the form

nrz(1—cyhy,)

=} i
Y, = cE(1+¢,2)sin (1T 02)

exp [i(nrcy(1 — ¢y hy,) x[hy, — 01)], (2.19)

where # is an integer.t Group velocities for these modes may be defined by

¢; = mean energy flux/mean energy density,

e = wnwhy, (1 —f?/w?)
© o[ (1+ Beg) n2rd(1— oy hy) + (1 + oD i A2)’

where B =31+ —erhy) + (1 —crh)?+ (1 =y k) + (1 =y hy)?). (2.21)

yielding

(2.20)

To proceed further we need to specify the geometry of the system under consideration, and we
first discuss the formalism for the simplest case for steep topography, which is represented in
figure 1. The topography is of arbitrary shape except that (@) there are only two points on the
bottom surface where a characteristic is tangential to the surface namely P, and Py, and (4)
choosing the coordinate origin at the point where the tangential characteristic at P, meets the
surface, the topography outside the range spanned by the characteristics £ = 0 and 9 = 0 is
assumed to be horizontal. We take the depth on the deep side to be iy and the depth on
the shallow side to be #;, and define

— 0 ﬁf___ hL 1 — Q
7L—f—h1, ¢ co(l—eyhy)’ 4 (= k)t (1— ¥ N2(— 1)) ‘ (2-22>

1 Equations (4.25), (4.46), (4.51) and (6.5) of Baines (1973) contain errors and should read as the corresponding
equations in this paper, namely (2.19), (2.35), (2.37) and (5.3).
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32 P. G. BAINES

and similarly for yg, 4. It may then be readily shown (see Baines 1973) that on the left-hand
side (Lh.s.)

16 =32 140 <o), (2.23)

where f;(£) is periodic with period 2yy, and must satisfy the radiation condition

7O = 5P| filcorg—(-Bds (~2r<E<0), (2.24

where P denotes the Cauchy principal value, and similarly on the r.h.s.

-4
g) =52 4o (7<0), (2.25)
27w
where gp(7) has period 2yy and
go(n) = Pf go(s) cot———R(s—oy) ds (—2ypr<7<0). (2.26)

=2

z:—hL

Ficure 1. The geometry for the simplest case of a steep continental slope, showing the rays or
characteristics for the internal tidal motion.

The boundary conditions (2.10) in terms of f and g are

S(€)+g(n) =0 on z=0,

2.27
F&-+eln = 75 (1+75505) = 40 on 2= k() (2.2
The bottom surface may be written
§=—Ky(n) or p=-Hy), —-2yp<n< va,} (2.28)
and =-Ki(n) or 9=—H£), 7a<79<0, '

where all these functions are single-valued, and #, is the y-characteristic at Pa. Further, for each
characteristic 7 in the range — 2y < 5 < 7, there is a corresponding characteristic ¢(7) in the

same range such that
Ky(p(n) = Ky(n)- (2.29)
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INTERNAL TIDES OVER CONTINENTAL SLOPES 33

The characteristics # and ¢(7) intersect the bottom surface on the same £-characteristic. Clearly,
if 9y is the y-characteristic at P, we have

$(1m) = 71, (2.30)
and also, in general, o(p(n)) =1, (2.81)
and & (7a) = —2yg. (2.32)
We regard the function ¢ (%) as being defined by equation (2.29). The second of equations (2.27)

thenyleldsthat ¢y o) = A(m), on £= —Ky(n), —2y5 <E<0,

Na < <0, (2.33)
g(n) —g(g(m) = A(n) —A(¢(n)), for —2yr <9 <1

with ¢(9) as defined by equation (2.29). Equations (2.33) together with equations (2.23)—(2.26)
constitute the problem to be solved for the functions f(£) and g(5), and it is assumed that there is
aunique solution.
The internal wave velocity field is given by
Ui = Uy +Uy, (2.34)

where u, is given by the stream function ¥, and

Q1
%=~ ayas hE +4m) —ches(fo(€) +&(m)), (2.35)

wy = c§(1+¢12) (f5(€) —gp(m)),
on the Lh.s. of the topography, with

energy flux = ;To(ﬁg-ﬁ f;nfpr(g)féi(g) dg, (2.36)

where suffixes r and i denote real and imaginary parts, and

energy density =17 (1+ [ c(e)2deli) [ (e +Au(6)?) de

7L

2,2 06 Ao [ 2 2

+ (L +f2fof) 222 (for(€)? +/0s(£)%) A8, (2.37)
YL —2yL

Similar expressions may be written down for the r.h.s. From these relations and equation (2.20)

an ‘effective mode number’ n. may be defined. This gives an estimate of the dominant modes

present without requiring Fourier decomposition.

3. THE ITERATION PROCEDURE

The above equations (2.23-2.26, 2.33) were solved numerically by means of a double iteration
procedure. Various other (simpler) iterative schemes and manipulations of the system were
investigated, but the only one which converged to the correct answer was that given below.

In order to standardize the system we make the following change of variables

_ _ " _ K@) -
0'7R’ Oa v M(6) o G(0) = g(n), (5.1)

A(0) = A(y), D(0) = ().
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34 P. G. BAINES
We then write G0) = A(0) +Gp(6) (=2<6<by), } (3.2)
G(6) = A(6) — 34, M(0) + G(0) (62 < 0 < 0), '
where, from equations (2.23), (2.25) we see that
Ga(—2) = Gy(6a) = Gy(0). (3.3)
Gp(6) must then satisfy the following set of equations:
. ,
Gy(0) = —%in Gy(s) cotdn (M (s) —M(0)) M'(s)ds (0 < 6 < 0), (3.4)
(2
Go(®(6) = Golf) (~2 < 0 < 0a), (3.5)
where @(0) is defined by M(D(0)) = M) (—-2<0<bh), (3.6)
0
and D(0) = %in D(s)cotin(s—0)ds (—2< 0 <0), (3.7)
~2
where D(0) = 34z 6— A, M(0) + A() +Gp(0) (fa <0 <0), (3.8)
=340+ A0) +Gp(0) (=2 <6 <8,). } '

These equations (3.3-3.8) present a novel mathematical problem to be solved for the function
Gy(0). The method of solution is first of all to ignore the integral condition (3.4) and iterate to find
a function satisfying all the remaining equations. From this function (G(0)) one may obtain
another function (G'(#)) which satisfies (3.4) but violates equation (3.7). This violation
(GI*(6) — GL(6)) may then be used as a starting-point for a second cycle of iterations omitting
equation (3.4) (the inner loop). The process of satisfying (3.4) while violating (3.7) is then
repeated (the outer loop), and so on. The procedure is complicated by the need to consider com-
binations of successive iterates in order to ensure convergence, in each of the inner and outer
loops. In the symbols used below, the superscript refers to the outer loop while the two subscripts
refer to the inner loop.
To start the iteration procedure we first define

RYL(0) = Ap 60— A 3M(6) + A(6) (62 < 6 < 0), (3.9)
=10+ A(0) (—2<0<0,),

0
and RL,(0) = 3P f RY,(s) cot b (s — 6) ds. (3.10)
-2

We next obtain a new function R}3(0) from Rf,(0) which satisfies the boundary condition (3.5)
and also (3.3). The simplest way of doing this is to take

Ri3(0) = 5(Riz(P(6)) + Riz(0)) (-2 <6 < 0a),
= RL,(0) + R},(0a) — RL:(0) (3.11)
— (0/04) (Ri3(0) — Ri3(0)) (0a < 0 < 0),
We also define RL,(0) = Ri3(0) — RL,(0). (3.12)

Ignoring the Lh.s. radiation condition (equation (3.4)) the result of this first iteration in the inner

loop is
G,(0) = Ri3(0), (3.13)
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INTERNAL TIDES OVER CONTINENTAL SLOPES 35

which satisfies the boundary condition exactly and fails to satisfy the r.h.s. radiation condition
with the error R}, (6). For the second cycle we therefore take

R%l(e) = Rh(@), (3-14)

and repeat the procedure to equation (3.12). Numerical investigation shows that, if subsequent
iterations are taken in this manner, the functions R},,5(6), R},23(0), etc., alternate in sign. To
increase the rate of convergence of the iteration, at every cycle except the first the expression

f_: |p: RYa(0) + (1 —p;) RY_1,(0)|2d0

was minimized numerically as a function of p;. The required value of p; is given by

by = (To—=To)[(Ty+ T, —2Ty),
0 0
where 7= [ RO R0 a0, To=[" R0 R0,
-2 -2

Ty =3[ (RE(O) REA(0)*+ RIO)* BEL1u(0)) a0, (3.15)

the asterisk denoting complex conjugate. For the second iteration we have ¢ = 2, and for the first,
by = 1. The result of the second iteration in this loop is then

Gpa(0) = G51(0) +p R34(0) (3.16)
satisfying the conditions (3.3), (3.5), exactly and equation (3.7) with the error
R31(0) = paRE4(0) + (1 —ps) Ris(0). (3.17)

This cycle is then repeated as often as is necessary until the desired accuracy is obtained, yielding
a function G} (0) which satisfies both the boundary conditions (3.3), (3.5) and the r.h.s. radiation
condition (3.7). For the ¢th iteration we have

R (0) = pi1 RY_14(0) + (1 —p;1) R} _24(0), )

0
Rhy(0) = 3P f Rh(s)cotr (s—0) ds

(3.18)

RE3(0) = H(REa(P(0)) + Ria(0)) (-2 <0 <0a),

= Ri5(0) + R} 4(0a) — R13(0) — (6/60a) (Riz(0a) ~ Ri2(0))  (6a < 0 < 0),

Riy(0) = Ria(6) -~ Rix(0), )
yielding G34(0) = Gpi_a(0) +p; Rix(0), (3.19)
with the error term, the starting-point for the next iteration,

Ri111(0) = pi R4 (0) + (1 ;) Ri_14(0). (3.20)

The rate of convergence depends markedly on the value of 6. With 40 grid points in each range
—2 < 0 < 0aand b, < 6 < 0,for |1 + 64| less than about 0.4 convergence is fairly rapid, accuracy
to within 1 %, being obtained after about four iterations. However, as 6, decreases the number of
iterations required increases, and ten may be required for 2 9, accuracy when 6, = —0.2. The
rate of convergence depends less strongly on the slope of the topography.

5 Vol. 277. A.
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36 : P. G. BAINES

The function GI(0) will not, in general, satisfy the L.h.s. radiation condition, equation (3.4).
We therefore define the function

S1(0) = — 3iP f: G1(s) cot e (M(s) - M(6)) M'(s)ds (6 < 6 < 0), (3.26)
~0, ' (-2 <6< 6y),

and also, GU(0) = GL(0) +S1(6), RH(6) = SL(6). (3.27)

GIY(6) will then satisfy the Lh.s. radiation condition but not that on the r.h.s. R{(6) is then taken
as the starting-point for a second series of iterations on the r.h.s. (inner) loop as defined by equa-
tions (3.9)—(3.20), resulting in the function GX(6). STL(0) is then defined in the same way as for
ST(6). It transpires that, if the double loop iteration scheme is continued in this manner, the suc-
cessive functions GY (0), GJ+1(6) oscillate in sign about the desired limiting value, sometimes
with increasing amplitude, and do not converge. However, we may again make use of the oscil-
latory character to determine a procedure which will converge, as follows.
Supposewetake _
Gy (0) = Gy=(0) + G5 =1(0) +5771(0),
GI+1(0) = GJ(0) + G} (6) + 57 () (8.28)
= GJ(0) + GI1(0) + §7-1(0) + G (0) + 87 (6).

Then a combination of these two,
9,GI+(0) + (1—4¢4) GJ(6)

will also satisfy the L.h.s. radiation condition and the boundary condition, and have the error

term
g,87(0) + (1—g,)§7-1(0)

with respect to the r.h.s. radiation condition (i.e. this part of the function does not satisfy the
condition). The aim, therefore, is to choose g; such that this error term is minimized, and
minimizing

[Clars7@)+ (1-05) s7-100) 2o,

yields, as for equations (3.15), (3.16),

95 = (Ts— To)[(Ty+T; - 2Ty), (3.29)
0 0
where T, = f $7(0)$7(0)*do, T, = f $T-1(6) $7-1(6) * 46,
1”“ . . (3.30)
T, =3 f | (87(0)§77H6)* +87(6)* 7(6)) db.

Hence, for the second iteration in the outer loop we take
Gi™(0) = G5'(0) + qu(G3'(0) +8™(0)), (3.31)
with RiTH(0) = queS™(0) + (1 — q11) S1(0). (3.32)

In every case calculated ¢; was a number between 0 and 1. All subsequent iterations in this
second, outer loop are carried out in the same manner as the second iteration, until the desired
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accuracy is obtained, GJ () representing the Jth approximation to Gp(6). The number of itera-
tions required is again rather insensitive to the topographic slope but strongly dependent on
the ratio of the depths 4y /g, or more accurately, on the value of 8,. For values of |6a| < 0.2 the
rate of convergence is very slow?f, 10 or more iterations being required for tolerable accuracy
(say 2-3 9,), whereas for |0a| ~ 1 this accuracy is obtained within 6 iterations.

To summarize the complete iteration scheme to find the function G(6), —2 < 6 < 0, satisfying
equations (3.3)—(3.8), we first construct the functions R},(0), R;(6), RI;(6), R},(6) from
equations (3.9)—(3.13), obtaining GX,(6), R}, () from (3.13), (3.14). We then continue iterating
in this inner loop via equations (3.18)—(3.20), where p, is defined by equations (3.15),
until the error term R} ,,(6) is sufficiently small. If this occurs after the jth iteration, we take
GL(0) = G;(), and then we define ST(0) via equation (3.26) and GII(6), RI5(6) by equation
(3.27). We then return to the inner loop and obtain RIf(6), R¥ (), Rii(0), etc., from equations
(3.10)—(3.14),and then makesuccessive iterations from equations (3.18)—(3.20) until convergence
is obtained yielding GI'(6). The quantity $T(#) is then obtained from equations (3.26) and
GI(0), RIL(6) from equations (3.31), (3.32) where gy; is obtained from (3.29), (3.30). R} (6)
is then used to begin the third inner loop, and equations (3.31), (3.32) are used in all subsequent
iterations in the outer loop.

Having obtained Gy(6) and hence G(6), the corresponding stream function on the Lh.s. in
dimensionless form may be defined as

F) =f&), &=E&/v (3.33)
and from equations (2.33), (3.1), given by
F() = 4(6)-G(6). (3.3

The function Fy ({) representing the internal wave motion is then given by

Fy(§) = F(E) +34.8 (3.35)

The derivatives G, (), F,(§) represent vertical velocity profiles, and the results of subsequent
sections are presented in terms of these functions. We then have

So(€) = QF,(§) [y, on the Lhs. }
&) = QGL(0)[yg ontherhs.,

and the actual fluid velocities and energy fluxes and densities may be computed from equations
(2.35)—(2.37). For 05 = — 0.2 the total computing time required is about 8 min on a CDC 3600.

(3.36)

4, PROCEDURES FOR MORE COMPLEX TOPOGRAPHY
AND STRATIFICATION, AND INCIDENT WAVES

The procedure developed in the preceding two sections for a simple continental slope may
readily be extended to a variety of other situations, so that virtually all conceivable two-dimen-
sional situations of practical interest are soluble by these methods. Some such situations are
illustrated in figure 2. Not all of these have been treated but the author is confident that satisfac-
tory convergence may be obtained within computing time which is comparable (possibly larger
by a factor of 2 or 3 for cases (b), (¢) and (d)) to that for the simplest case.

t For |0,] very small (< 0.05) the system appeared not to be converging at all. However, it is believed that
convergence may be achieved by increasing the number of grid points.

5-2


http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/ B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

38 P. G. BAINES

The procedures for solving the generation problem for the various geometries represented in
figure 2 are as follows. For case (a) the radiation conditions on the Lh.s. and r.h.s. imposed where
the bottom is horizontal may be transformed by reflexion of the characteristics from the top
and bottom to apply to the range of characteristics along the line AA’, in the manner indicated
in Baines (1973). The problem will then be of the same type as that described in § 8, with the form
of the intervening topography being represented in the radiation conditions. After solving the
problem by the iteration procedure the total velocity field may be constructed by successive
reflexions away from AA’. Case (b) is similar to the §3 problem except that the Lh.s. radiation
condition now applies to ther.h.s. characteristics emanating from region FC:and DE of the bottom.

A
@
A
C D
© @)
4 7 /
D c

Ficure 2. Examples of topography to which the procedures developed in the text may be applied.
Straight characteristics have been drawn for simplicity.

The r.h.s. iteration loop may be carried out in the same manner, except that we now have two
separate regions — CD and EB’—where boundary conditions of the form (3.5) must be satisfied.
For case (¢) one first satisfies (say) the r.h.s. conditions by iteration on the range CC’, as before
but then must also iterate on the Lh.s. on the range DD’ in the same manner in order to satisfy
both the boundary and radiation conditions there. One then returns to the r.h.s. and repeats the
process. More complex situations such as case () may be treated in the same manner, provided
that such characteristics emerge from the topography after a finite number of reflexions (i.e.
there are no closed loops or limit cycles). Situations as complex as this are likely to be very labor-
ious in practice, as such characteristics must be traced through the system and the functional
relations determined. Case (¢) is a degenerate form of the same class of problem, equations
(8.4)—~(3.8) with f, = 0, and only the single one-sided iterative loop is required.

The characteristic procedure for all kinds of topography shown in figure 2 may also be applied
to situations where equation (2.17) is satisfied in layers. From the boundary conditions of con-
tinuity of pressure and displacement at an internal interface (see for example, Yih 1963), it may
readily be seen (from linear theory) that there is no reflexion from the interface if py(z) and N(z)
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INTERNAL TIDES OVER CONTINENTAL SLOPES 39

are both continuous there. Hence the above theory may be used with a wider range of charac-
teristic curves constructed from piecewise sections each satisfying (2.17) for various ¢, ¢;, pro-
vided py(z) and N(z) are continuous at the interfaces. In particular, stratification containing a
thermocline (or several thermoclines) may be modelled in this way (figure 3). In fact one may so
model almost any continuous density stratification and clearly the fewer the number of junc-
tions required the better will be the approximation. However, the procedure will break down
if there is significant internal reflexion of wave energy from layers or abrupt changes in density.

2
A‘f A
>X 0 » N2
“l —_— e — AL
—hn

Ficure 3. A typical characteristic and corresponding N? profile for a two-layer model of a thcrmocliné.
po(2z) and N(z) must be continuous at z.

The methods described in this paper may also be applied to the reflexion-diffraction problem
of internal waves incident on the same class of topography. The procedures will be the same,
except that the initial functions used to start the iteration must be suitably modified. A suitable
initial wave field for this type of problem is that obtained by the continuation of the incident
wave on characteristics by reflexion from the boundaries.

O% =0

/\\A

7
0=—2

NS
e L
b
Ficure 4. Topography for a linear slope with hy/hy = 0.5. Ranges for the velocity profile functions of figure 5
are indicated, the profiles drawn (not to scale) representing the baroclinic motion when the barotropic
velocity is at its maximum from right to left. Regions A and B, each comprising 1% of the characteristic range
(5 grid points) are indicated.
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5. STEEP LINEAR SLOPES

We first apply the above procedure to the simplest case of a linear continental slope in an ocean
with constant N, asin § 6 of Baines (1973), so that the results of these two sections together describe
the internal waves generated by all such simple slopes under these conditions. Choosing the
coordinate origin at the point where the characteristic which is tangent to the topography at the
top-most corner meets the free surface gives, as the equation for the topography,

z=—hy,, —00<x<hhe
z=—hy—s(x—hyfc), hpfe < x < (hg—hy)ls+ e, (5.1)
z=—hg, x> (hp—hy)[s+hye,
(a) Lhs. hyfhy = 0.5 s = 10000.0 (b) rhs. hpfhy = 0.5 5= 10000.0
536 84k
2 : 4 4536 : 4.84
-\ @ . - @

0
Gyif0)
._.1 =
-9 -2
2 T T T
A.74
] ©) . 4
1H , I
Fpi(z)'
Filt) 2
P ; » [ L
B 6,0
-]l -
- __2 ,__E\
=9 ;- = o2
! ! 1 1 —4
-2 -1 o 03491
(¢) Lhs.  hyfhy = 0.5 s = 0.105 (d) r.hs. hpfhy = 0.5 s = 0.105

F1cUrE 5a~d. For description see opposite.
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(e) Lhis. hyfhy = 0.9 s = 10000.0

06 .
B © ]
04k = (f) rhs. hyfhy = 0.9 s = 10000.0
! S 1244
4 L] i) ] . l A
_>y T
<1 .
2} | 02 " b » (f) ‘ R
> > i oL i
OF I e, V0 :
= o ]
= O Gyi(0) /F
I O H 8,0 v/\ 4 Aof‘
r((I) s Gpr(e) /
-02} H ~
35 z
= - ~2f
-9 2 B —
(@RS : H
0Z0 s
DR i
(@) Z 043! - -
Eé r —4 |
0 -1 — 24l T2
-06 - ! b -9.24Y
= -1
_ Ms26M192
T - 20 % T
(1)
0 ()K g%"'-Gér(o)
¢ _
P —20 -
_ P
<
é : — ]
> E —40f _
@)
= B |
= O }
—60 1
E 8 — = 0 )976.16& 6775 -1 ~2
(g) Lhs. hyfhg = 0.1 5= 0.2 () rhs. hyfhy =01  s=02

FiGURE 5¢-h. The functions F,(§), Fy(), Gp(0), Gyi(0) representing the baroclinic velocity profiles for a variety
of steep linear slopes with ¢ = 0.1. The velocity field in terms of these functions is given by equations (3.36),
(2.35).
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where s is the slope of the slope. The topography is shown in figure 4. For this geometry with
constant ¢ the topographic function N(6) depends only on the ratios Ay /Ay, s/c (as in the situation
for the corresponding case in Baines (1973) where s/¢ < 1), so that the form of the solution is also
only a function of these ratios.

We first consider /p,[hg = 0.5, sfc = 10° (effectively infinite slope unless ¢ very large), as a
representative case. This solution has many features which are common to those for all values of
sfe > 1, hy[hg, and the variation of the wave motion with these parameters will be discussed
subsequently. The main features of interest are the velocity profiles, the energy flux and its dis-
tribution and the energy density and its distribution. Velocity profiles F;(¢), G (6) of the internal
wave motion as functions of the characteristic variables §, € are shown in figures 54, b, the rela-
tion of these ranges to the topography being shown in figure 4. The salient features of the (deep
water) r.h.s. velocity profiles are (i) a nearly square-wave profile oscillating in phase with the
barotropic tidal motion, and lagging 90° in phase behind it, its Hilbert transform which, in com-
parison, has a saw-tooth shape; (ii) two very prominent peaky regions of velocity centred around
the two characteristics emanating from the top corner. The square wave in the region

~2.0<6< —1.0,

when added to the initial barotropic motion u,, results in zero net in-phase} motion in the tri-
angular corner region below the { = 0 characteristic (and therefore, at all corresponding corners
and subsequent reflecting points for these characteristics). On the (shallow) Lh.s. the velocities
are comparatively smaller, the only significant feature being a ‘peaky’ region which is again
centred on the characteristic which is tangent to the top corner. These velocity profiles are
similar to those obtained by Prinsenberg (1971) for step-like topography using a procedure
based on normal modes, the main differences being (apart from obvious differences due to the
change in depth) that in Prinsenberg’s solutions the peak velocities are smaller, and small
amplitude short wavelength oscillations are present all along the profiles. Both these differences
may (presumably) be attributed to truncation to a finite number of modes. The r.h.s. velocity
profiles of figure 5 are also similar to those of Rattray et al. (1969) although their L.h.s. boundary
conditions are different.

The energy flux and energy density (per unit surface area) for s/c = 105, i [hy = 0.5 associ-
ated with the overall internal wave motion are both greater on the r.h.s. than on the Lh.s. by
the factors 21.0 and 6.0 respectively. Consideration of the integrals for the energy and energy
flux (equations (2.36), (2.37)) show that on the Lh.s. the peaky region, taken to consist of the
five grid points centred on the corner characteristic (} of the range), contains 76 9, of the Lh.s.
energy density (per unit surface area) and 50.5 9, of the L.h.s. energy flux, the remainder of the
energy flux being spread fairly evenly over the range with a flat secondary maximum at the
characteristic furthest from the peaky region. Returning to the r.h.s. the two peaky regions
(each taken as 5 grid points, {5 of the total range, and denoted ‘A’ for the upper and ‘B’ for
the lower) each contains 23.5 %, of the total energy, with a sum of 47 9, for the two. Minima in
energy occur midway between the peaky regions. However, the energy fluxisa minimum at each
of the peaky regions and has two broad maxima midway between them, the energy flux from
the lower region (centred on the characteristic from the bottom corner) being larger than that
from the upper by a factor of approximately 2.2.

T ‘In-phase’ denotes motion in phase with the barotropic motion across the slope, while ‘out-of-phase’ refers
to motion 90° out of phase with it.
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Before proceeding further it is appropriate to note some limitations of the numerical pro-
cedure. For inviscid flow, a plane internal wave incident on a curved corner generates infinite
velocities on the characteristic tangent to the corner (Baines 1971). (A concave corner presents
no such difficulty, see appendix 1). In the present case the region of fluid over the slope may be
regarded as the source region for internal waves, and since some of these will impinge on the slope
a similar singularity will be expected. This singularity dominates the motion over a distance
which is of the order of the radius of curvature of the corner, which for the present situation is a
distance which is (at most) the distance between two-neighbouring grid points. It is significant
that the solution is not very satisfactory in satisfying the two radiation conditions in these peaky

(2) Lhus. (b) r.hus. (¢)
10 RN E R R N SR BN A RN S 10 — 10 —— ——
r E q g - g
C ] - ]
C ] r 1 ]
| Jimiting flat-bump ] I - - &hs -
i linear slope ] r 7 I Jhs \T\
L L 4 L \ ~ A
uarter

il
H

10°®

il

10°

T T
Lot el

TTTT]

\quarter circle

T T
L

T R ]

4 0!

T

limiting flat-bump
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T

-

Lo bl
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1076 - 6|— ] L i
10 C 1 1w [ ] limitipg flat-bump,
L steep linear slope ] K ] linear slope
= . R 1 w0 -
L -
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Ficurk 6. Energy fluxes (g, b) in units of p, @2[s, and energy densities (¢) in units p, Q*/hg as a function of Ay [hy
for the vertical linear slope (s/¢ - o), the steepest flat-bump linear slope (s/c -~ 1—), and the quarter circle
slope. These figures have been drawn for ¢ = 1.0 for all cases, so that these three slopes may be compared.

regions, and this should be borne in mind when viewing the results below. With this sharp-
cornered topography the situation is the same regardless of the number of grid-points (for com-
parison, topography with rounded corners is considered in the next section). Another limitation
of the present numerical technique is on the closeness with which s/¢ may approach unity; the
lower corner point must lie at least one grid point away from the end of the range, which requires
sfe 2 1.025. This may be improved by taking more grid points.

Velocity profiles on both the l.h.s. and r.h.s. for values of &, [k = 0.9, 0.5 and 0.1 and for values
of s/c representing very steep slopes and slopes which are just steeper than the characteristic are
shownin figures 5a—h. From these it may be seen that the above general description of the profiles
for hy[hy = 0.5, s[c = 10° applies to every case, apart from the expected changes in proportion

6 Vol. 277. A,
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with A [/hy. Changes with s/c appear only as comparatively minor details. From the functions
F;1(8), Fyi(8), Gpe(0), Gyi(0) graphed in figure 5 the horizontal and vertical velocities #; and w,
may be obtained via equations (3.36), (2.35). Velocity magnitudes for other values of ¢ (but the
same s/c) may be obtained by multiplying by the appropriate ratio of amplitude factors Ay, 4.

T T T T

@
14+ -

= 0

10

energy flux
energy flux at sfe

rh.s.

= 0

energy density

energy density at sfe

0.6 L 1 1 1 1 1

Ficure 7. Energy fluxes () and energy densities (b) for linear steep slopes as a function of slope. Some scatter
(particularly for sfc near 1) but no systematic dependence on depth ratio A, /h; was obtained, and the ‘error
bars’ denote standard deviations. These curves, together with those of figure 6, contain the energy fluxes
and densities for all linear steep slopes with constant stratification.

These velocity profiles show a marked similarity to corresponding profiles for s/c near to
but less than unity (see, for example, Baines 1973), although the velocity amplitudes are com-
paratively smaller on the shallow side and larger on the deeper side.T Computed velocities for
the narrow ‘peaky’ region on the Lh.s. are larger than the corresponding barotropic velocity
Q/hy,, though much smaller elsewhere. On the r.h.s. the in-phase baroclinic velocities are approxi-
mately halfthe barotropic velocity @ /Ay, thus resulting in zero total in-phase motion in the corner
regions for steep slopes as noted above. Velocities in the r.h.s. peaky regions may be larger than
the barotropic velocity.

Values for the energy fluxes and densities on both sides for steep slopes (sf¢c = 10°) as functions

1 To convert the curves of figure 8 of Baines (19773) to functions F,({) etc. on the same scale as those of figure 5
here, the scales should be multiplied by — 2.0 for figures 84, ¢, and 0.5 for figures 85, d.
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of hy [hy, are shown in figures 64, b, c. The corresponding curves for flat-bump linear slopes in the
limit s/¢— 1 — are also shown for comparison. These curves have all been drawn for ¢ = 1.0 in
order to compare them with those for the quarter-circle profiles, but they may readily be con-
verted to other values of ¢ by the formulae given below. As for the flat-bump case, the energy
fluxes and densities vary dramatically with A /hy. However the dependence of these quantities
on slope is comparatively slight unless s/c is very close to unity, as is shown in figures 7a, b.
From the numerical results no systematic variation with /4 /A in the dependence of energy flux
and density on s could be detected and the curves in figure 7 represent averages of values for
different Ay [hg, with the ‘error bars’ denoting standard deviations. These fluctuations are
regarded as manifestation of a limitation on the accuracy of the numerical procedure as sf¢
approaches unity. In this limit significant contributions to both energy fluxes and densities come
from the peaky regions (see below) where the solutions may be inaccurate, for reasons given above.

Energy fluxes and densities for other values of ¢ may be obtained from equations (2.36),
(2.37) and figures 6 and 7, yielding, for both the Lh.s. and r.h.s.,

_ 2 0____]\[2 Eflux
energy flux (s, ¢, by, hyy) = poQ w [chlw cale

cN?
= Po QzTo_ % 3.941.103 (Epus) cale (5.2)

and

: _ Po@? 1+ Ey(s/c, hylhy)
energy densit (6 s ) =2 &2y e | B S

_Po@? 1+¢2
T kg o(1—w?[N?)?

X 0'214ED(5/6’ hL/hR)calca (5'3)

where the suffix ‘ calc’ refers to the values extracted from figures 6 and 7 for ¢ = 1.0 for the desired
values of sfe, hy [hy.

From figures 64, b and 7a we see that the energy flux on the deep side is greater than that on the
shallow side by a factor which depends on £ /ky but is typically about 10 for large s/c; as s/¢
decreases to 1.1 this ratio decreases by about 50 %,. The total energy flux from simple steep slopes
(sfe > 1) is approximately twice the maximum value obtainable from flat-bump slopes (s/f¢ > 1 —)
for virtually all values of &y, [hy. As sjc — 1+ this ratio decreases, but the r.h.s. energy flux for
sfc = 1.1is still approximately twice that for s/c — 1 —, so that the motion changes in a virtually
discontinuous manner at s/c = 1.

The r.h.s./Lh.s. energy density ratio is greater than unity by two orders of magnitude for
hyfhg = 0.9, but this decreases to nearly unity for Ay [/hy = 0.1. Variations of energy densities
with slope (for s/¢ > 1) are comparatively slight. These results are in contrast with those for
sfc < 1 where the energy fluxes on each side are approximately equal and the energy density is
larger on the shallow side.

Finally, some remarks on the distribution of energy fluxes and densities. The l.h.s. energy
flux is concentrated in the narrow region of large velocities centred on the corner characteristic,
the approximate percentage of the total in this region (taken as § of the characteristic range) as a
function of Ay, [/hg being given in table 1. No dependence on slope could be detected. The r.h.s.
energy flux, on the other hand, is very small in the regions of peak velocity and is mostly associated
with the motion between them, the larger contribution coming from the lower range of charac-

teristics emanating from the bottom corner region. The upper region has a flat centrally situated
6-2
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energy flux maximum for all A, /Ay, as does the lower region except that the maximum is situ-
ated on a characteristic emanating from slightly below the bottom corner. This skews the energy
flux distribution, and this £ flux maximum approaches the lower region of velocity maxima as
sfc - 1 +. These characteristics of the energy flux distribution are useful as an indication of the
persistence of the velocity field against attenuation processes. For example, if the wave field is
advected away in a short period of time by some non-tidal motion, the region of peak velocities
on the Lh.s. should reappear much more rapidly than that on the r.h.s., where the broad-scale
motion should be the most prominent feature. The percentage of Lh.s. energy density in the (5
grid point) peak velocity region generally increases as Ay/hy decreases (see table 1) and has
virtually no variation with slope. On the r.h.s. the energy density is concentrated in the two peak
velocity regions (denoted A and B in figure 4) and the percentage of the total contained in each
region varies systematically with both 4y, /Ay and s/¢ (in spite of the uncertainties in velocity ampli-
tudes previously mentioned). These variations are shown in figure 8.

TABLE 1. PERCENTAGES OF L.H.S. ENERGY FLUXES AND DENSITIES IN PEAK-VELOCITY REGION

hyfhy ... 0.9 0.7 0.5 0.3 0.1

total Lh.s. energy flux in 50 50 50 70 80
peaky region (%)

energy density in peaky 72 67.5 75 90.5 95.5

region (%)

0.8 T T T T T T T T T T T T T T T T T T T
region A region B
sfe=1.1
m » s/c=1.1 L % ]
< 5 2
E 10
o~
2 04— - -
g 5
o 5 10°
& 5
& 2 - -
(5]
C— A — —F
1 1 1 1 ] 1 ] | { 1 ! 1 ] 1 1 [ 1 [l 1
0 0.5 1 . 0 0.5 1
hyfhy

Ficure 8. The fractions of total r.h.s. energy density, for steep linear slopes with constant stratification,
contained in regions A and B of figure 4, as functions of sje, & [hy.

For a representative case with more realistic density stratification we take ¢y = 0.01,¢; = — 2.16,
kyfhg = 0.1, hy = 1.0 and s = 1000. The Lh.s. and r.h.s. energy fluxes are 2.03 x 10~%p, Q?/s
and 3.06 x 10~3p,Q?/s respectively, and the corresponding energy densities 2.89 p,Q2/hy and
5.82 p, Q2/hy, so that even with much stronger density stratification at shallow depths the motion
on the deep side has greater total energy flux and density. The profiles of the functions F;(6),
G;(0) are similar to those for ¢ = 0.1 apart from the change in horizontal scale (f = —0.52),
and larger amplitudes.
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6. QUARTER-CIRCLE SLOPES

To complement the foregoing results for linear slopes we next consider slopes with quarter-
circle profiles as shown in figure 9, and represented by the equations

zZ=—h, —00<x<XK,
z= —hg+[(hg—h)?— (x—x5)2], % < x < xo+hy, (6.1)
z=—hg, %> % +hy,

where %y = 1/¢ (hg — (1 +¢2)} (kg —hy,)), is constant, the origin again being taken at the point
where the tangential characteristic meets the surface. The radius of curvature is equal to g — /iy,
and these results may be taken as representative of slopes with large radius of curvature, whilst
those of the previous section relate to small radius of curvature. Typical velocity profiles are shown
in figure 10 for the case ¢ = 1.0, i [hy = 0.3. The Lh.s. velocity profiles are very similar to those for
linear slopes, indicating that the character of the Lh.s. motion is insensitive to the shape of a steep
continental shelf. The r.h.s. profiles show more variation: the in-phase rectangular profile has
become more triangular, the velocities in region A (as defined in § 5, see figure 10) have markedly
increased and those in region B correspondingly decreased: Also, there are now velocity
fluctuations which are centred around the characteristic emanating from the (smoothed)
bottom corner and locally anti-symmetric about it (see appendix 1). The large velocities in region
A may be attributed to the split-reflexion of internal waves at the tangent point generated over
the sloping topography. Since part of the body force generating region lies below the tangential
characteristic one might expect the velocity profiles to show some diffraction characteristics,
i.e. Fresnel integral-like structure near region B. Oscillations of this nature are present in some
cases but are not very evident in the profiles of figure 10.

4 }4 D777/ 7777
Ficure 9. Quarter-circle slope, with Agfh, = 0.3, ¢ = 1.0.

From figure 6 we see that in general the energy fluxes and densities are larger than for linear
slopes. The larger energy densities may be essentially attributed to the large velocities in region
A, while the larger energy fluxes indicate that the circular shape is a more efficient internal wave
generator than the linear profile. On the Lh.s. the region of peak velocities still contains most of
the energy flux, while on the r.h.s. the energy flux is very small ( < 0.5 %,) in region B, increases
away from it on each side and has maxima near both sides of region A. =
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7. D1SCUSSION: TIDAL MECHANISMS FOR OCEANIC BOUNDARY MIXING

In application to the ocean the inviscid theoretical results of the preceding sections will be
modified by various turbulent and dissipative processes which may be divided into twokinds: those
which are associated with the bottom boundary and boundary layer and those which are not.

The bottom boundary layer is generally turbulent (Wimbush & Munk 1971) with a critical
velocity for instability (based on Ekman layers) of the order of 1 mm/s. A turbulent boundary
layer on the slope implies the existence of vertical mixing, but the character and magnitude of
this mixing depends very much on the nature of the turbulence in the boundary layer. Labora-
tory experiments with marginally unstable oscillating boundary layers reveal a spatially periodic
structure which results in mixing and horizontal layering (Hart 1971; Cacchione 1970; Robinson
& McEwan 1973). Whether or not the same periodic structure occurs at the higher Reynolds
numbers applicable to the ocean remains to be determined. Also, experiments by Kato & Phillips
(1969) on entrainment by a turbulent layer with an imposed stress yield results which may be
applied to a horizontal layer but not to a sloping turbulent layer, since there is no external den-
sity gradient along the layer and the crucial phenomenon of mixed fluid leaving the layer is not
present. A summary of present knowledge of entrainment processes is given by Turner (1973).

(@) Lhs. hyfhy = 0.3 (6) rhs. hyfhy = 0.3
*9.44 944 A

G (0)

1 —_d :'-:: 1

-2 - 0

03 =1 =2

1491

Ficure 10. Velocity profile functions F,(8), Fyi(£), Goe(0), Gyi(0) for the quarter-circle slopes with hyfhy = 0.3,
¢ = 1.0, over the ranges shown in figure 9.

However, it may be assumed that the character of the turbulence will depend on the external
velocity field producing it, and we compare two extreme cases, (¢) where the external velocity is
along the constant depth contours, and (4) where it is perpendicular to them, in the up (or down)
slope direction, as in the experiments of Cacchione and Hart. We expect a priori that there will be
greater vertical mixing in case 4 than case ¢ because the turbulence may have more vigorous
structure in the vertical plane and also because there will be considerable vertical displacement
of the external fluid.
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A second possible source of vertical mixing is that associated with the shear instability of the
internal wave profile. The local Richardson number may be defined by ‘

N2 |
R = Gy (71
where, on the Lh.s. 7
u=Re [m —Cgclfp(g)] e~iut, , v (7j2)
so that , 3 .
Ro= 3 [Roeme (10 20y )] (13)
0?1 co(1+6,2)® (1 —fw? +¢%) (7.4)

" QLF3(8) — 2es ety Fyul£) cos ot + (Fys(8) — 26, Febyy Fy (€)) sim ot

where Fyp:({) and Fpi({) are the real and imaginary parts of F(§) with @ = 1, and similarly on
the r.h.s. with yg, Gp(0) replacing yy, F,,({). When ¢, = 0 we have

B (= fYer e
= QEFTT) coswt + Fi (L) smwt)?”

(7.5)

Now it is a general property of Hilbert transforms that the maximum gradient of a function does
not coincide with that of its Hilbert transform but rather with the peak value of the latter (see
the velocity profiles of figures 5 and 10). Hence in order to consider the minimum values of R;
as a function of ¢, { and ¢ it is adequate for present purposes to consider the expressions

P s e YR Y i S )
iT T D) costwt * | QRFn(0)EsmPwE

(L=t et)  werh(1= o+ )
Q2Gp(0)2cos?wt ’ Q*GL(0) sinwt  °

(1.6)

each of which relates to a particular velocity profile for given topography. We take R; = } as
the criterion for onset of instability and apply these results to the velocity profiles of the previous
sections, distinguishing between the stability of the ‘peaks’ in the r.h.s. profiles and that of the
basic square-wave motion. Table 2 shows the values of @ (cm?/s) necessary for R; < } for the
representative cases given, with a deep water depth of 2000m7. The most unstable profiles are
those for small % [hg. Equation (7.4) was used for the last case with representative oceanic
stratification, where the lowest Richardson numbers occur near the surface. Invariably, the
unstable part of the profile is centred on characteristics emanating from the region where a
characteristic is tangent to the bottom surface.

A typical realistic value for @ is 2 x 105 cm?[s (for a tidal amplitude at a coastline of 1 m and a
continental shelf width of 100km (see, for example, Baines 1973)), so that the inviscid theoretical
profiles are highly unstable in oceanic conditions, particularly on the L.h.s. One may therefore
hypothesize that the instability develops as a series of Kelvin Helmholtz billows along the charac-
teristic direction which are initiated when that part of the profile becomes unstable, and result
in mixing which will weaken the local density gradient and possibly result in layering. The length
of this unstable region may be crudely estimated if we assume that, in each tidal cycle, the final

1 These may conceivably be reduced by greater resolution (i.e. more grid points), so that it is more accurate
to regard these numbers as sufficient criteria.
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velocity profile obtained is smoothed by the mixing so as to be marginally stable; the instability
must then be due to smaller scale components which are regenerated each cycle. The magnitude
of the group velocity for waves of length L is

¢cN2 L ol f2
Gl = Trarons = Yo (- ) (*7)

The distance travelled by these waves in }-period then is

4.

¢ w*(1+¢?)

which is a measure of the length of the unstable region from the tangent point if L is taken to be
its width.

TABLE 2
hyfhy r.hus. (peaks) r.h.s. (without peaks) Lh.s.

¢c= 0.1 . " ’
¢z 104} 0.9 1.9 x 10 1.7x 10 1.8 10
s = 104 0.5 2.3 x 108 2.3x 108 2.6 x 108
s = 10t 0.1 1.5 x 10¢ 1.48 x 10¢ 1.5x 104
quarter circle 0.3 1.3 x 108 5.4 x10%
¢ = 0.01

6 = —2.16} 0.1

s = 108 3.1x10% 5.3x10° 3.0x 108

The intensity of the above mixing processes, and therefore the extent to which they can affect
the local density stratification, is partly controlled by the range of depths over which the topo-
graphic slope and (semi-diurnal) ray slope are nearly equal. Such near equality seems to be a
common occurrence in the ocean, and this suggests that the local density stratification may be
coupled to the internal tides, controlling their structure by a feed-back process.

8. A PRACTICAL EXAMPLE: THE ATLANTIC NEwW ENGLAND
CONTINENTAL SLOPE

The theory described above has been applied to a continental slope profile situated at 40°N,
70° 56’ W (approximately) for which internal wave and bottom boundary-layer measurements
have been made by Wunsch & Hendry (1972) in the spring of 1970. The bottom profile is shown
in figure 11 and is the same as in figure 4 of their paper except that the slope in the region of 600 m
depth has been taken to be slightly less than that of the characteristic rather than greater, so that
the only tangential region is that in the vicinity of 1000 m. This has been done for reasons of
computational simplicity, and is justifiable in view of the general uncertainty in the precise
values of s/c. The topography is assumed to ‘level out’ at depths of 130 and 2600 m, and requires a
‘double-hop’ formulation (figure 2a). The stratification used was constant below 400m,
taking a mean of the values observed by Wunsch & Hendry, and above 400 m (approximately)
was based on N2 profiles observed at nearby site D by Webster (1969). Two situations were taken
representing summer and winter conditions respectively. A mixed layer depth of 10m was also
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assumed, the bottom of which acts as a rigid reflecting surface for present purposes. The extent
to which this may be justified is discussed in appendix 2. Hence the stratification is specified by
(with &y = 2590 m)

¢ =c(1+6,2)?

where ¢p=0.064, ¢, =0, for |z|> 366m,
22.35
¢ = 0.0037, ¢ =—3=o=, 366> |z| > 40,
22.35

¢y = 0.0037, ¢, = 40 > |z] > 0,

T 2590°

where the last range applies for summer conditions only. Winter conditions are indicated in
figure 11.

100

summer

500 winter

1000

1500

2000

25001

)
\/
7 /////"

777777,

Ficure 11. Topographic slopes and M, characteristics used in §8. Note the difference between summer and
winter characteristics affected by stratification changes in the top 50 m. The numbers on the slope refer to
the moorings of Wunsch & Hendry (1972).

The various topographic functions in terms of characteristic variables were constructed by
graphical methods, and then smoothed over 3 grid points. (As in all the previous cases 81 grid
points were used for each characteristic period on the r.h.s. and 40 on the 1.h.s.) This smoothing
was necessary because the velocity profiles proved to be sensitive to roughness on the scale of the
grid-size owing to ‘sharp-corner’ effects (Robinson 1970; Hurley 1970). Genuine small-scale
roughness may, in fact, be very important, but will not be considered here.

The functions F,(§), G,(0) for the characteristic ranges OA and OB are shown in figure 12
for summer and winter conditions. These may be converted into vertical or horizontal velocity
profiles by means of equations (2.35), (3.1). The profiles show a much more complex structure

1 The velocity profiles represented by Gi,(e) are not final r.h.s. profiles, since the characteristics suffer one more
reflexion from bumpy topography before entering the flat bottom r.h.s. region.

7 Vol. 277. A.
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(6) r.h.s. summer, 6, = —1.353

(e) Lh.s. summer
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> E Fioure 12. Velocity profile functions F,,(£), Fy(8), Gor(0), Gy(0) for summer and winter conditions for
2 5 —2 < §, 0 < 0 for the topography and stratification of figure 11.
e
=1 TasLE 3. E 261 2 ft
T O ABLE 3. ENERGY FLUX, p,@?s~! AND ENERGY DENSITY, p,Q2 /g
=w Lh.s., summer 7.13 x 10-5 0.807
Lh.s., winter 3.59 x 10-5 0.676
r.h.s., summer 1.09 x 10— 0.651
r.h.s., winter 7.55 x 105 0.539
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than those for the simpler situations of the previous sections. However, the basic features of the
earlier solutions, namely the square wave pattern and large velocities at its edges, are still
present. The additional structure, mostly on the L.h.s. and in the range 05 < ¢ < 0 on the r.h.s.,
may be attributed to variations in s/¢ with depth. Since the characteristic slope ‘follows’ the
topographic slope, small topographic bumps may easily produce regions where s/¢ approaches
unity, resulting in large wave amplitude. Differences between the summer and winter profiles
are attributed principally to changes in the characteristic ranges with the stratification. The
energy fluxes and densities are given in table 3. Here the figures for the l.h.s. energy density are
larger than those for the r.h.s. because much of the wave motion is generated above the tangent
point P, where sf¢ < 1.

Estimates of values of @ required for instability of the wave field, based on the Richardson
number criteria of the previous section and the gradients of the velocity profiles of figure 12 in
the obvious places are given in table 4.

TABLE 4. VALUES OF @/cm?s—!

summer winter
Lh.s. 5.0 x 105 3.6 x 108
r.h.s. 5.3x 108 7.2 %105

Comparison with observations

An estimate of @ may be obtained from the observations of Magaard & McKee (1973) at
nearby site D (distance ca. 100km). The maximum north-south velocity of their observed baro-
tropic tidal ellipse is 0.66 cm/s. With a depth of 2600m this yields a north-south @ value of
1.72 x 105cm?[s. Assuming a linear decrease with distance to the nearest part of the coastline
reduces this figure by a factor of £ at the continental slope, yielding @ = 1.14 x 105cm?/s. Apply-
ing this figure to the continental slope profile in question shows that the internal wave field
is everywhere stable (at least for the resolution obtained) to shear instability by the criteria of
Table 4.

Horizontal velocities may now be calculated from the profiles of figure 12 by the expressions

1G'(6)

below 366 m for the r.h.s., where yy; corresponds to yy but with the depth of Py (figure 11), and
LEF'(€)

¢t YL

Q,

for the Lh.s. The values for vy, and vy are 5.626 hp and 17.629 /iy, respectively for summer con-
ditions and 4.287h,, 16.2894;; for winter. Hence we have

Uy = — 0.099G"(0) cm/s,
= —0.309F"(6) cm/s,
= —0.107G’(0) cm/s,
= —0.406F"(0) cm/s,

} summer

} winter

for the various profiles. Since the G’(0) values rarely exceed 4 except near the tangential charac-
teristic the baroclinic velocities on the r.h.s. are comparable with the barotropic ones. On the
7-2
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r.h.s. they may be larger by a factor of 2 or 3. The total baroclinic velocity field is the sum of the
velocities on the two sets of intersecting characteristics, and in the region (sufficiently far)
below the tangential characteristic the baroclinic motion will partly cancel the barotropic motion,
so that this region is comparatively low in energy density. Near the tangent point the baroclinic
velocities are large. This region is the site of moorings 347, 348, 349 and 350 of Wunsch & Hendry
(1972) (the tangent point in the theoretical model lies between moorings 348 and 349), and the
highest current meters, at a distance of approximately 100 m above the bottom, correspond to a
distance of about 1 grid interval above the tangential characteristic. The velocity profiles of
figure 12 indicate that at this distance the baroclinic velocities will be significantly higher than
those over most of the profile, and the observed r.m.s. value of 2cm/s by Wunsch & Hendry is
consistent with the present theory, as is the approximately observed ratio of ffw for the magnitudes
of the  and v velocities. (Larger velocities were in fact observed at 10 m, but the theory provides
no basis for comparison here because of the coarse grid size.) Moorings 346, 351 at greater
depths also lie in the characteristic range of large velocities around the tangential characteristic
in the model, whereas mooring 352 does not, and this may explain the larger energy densities
observed at the former sites. As implied above, reduced energy densities should be observed
at the intermediate depths (1000-2000 m) rather than monotonically increasing energy density
as suggested by Wunsch & Hendry (see fig. 10 of their paper).

N n=H,(¢)

Ficure 13. Characteristic geometry at a concave corner.

A glance at the velocity profiles of figure 12 shows that the energy is distributed among a
number of modes. Using the small array of moorings 348, 349, 350, with horizontal separations
of the order of 1 km, Wunsch & Hendry obtain a dominant local mode number of 2 based on the
local depth, and with the measured velocities calculate an up-slope energy flux of 2.2 x 10%]
cm~1s71. 1 The theoretical Lh.s. velocity profiles indicate the presence of mode 2, butitis certainly
not dominant, and the extraction of a local mode number from a small group of observations
is likely to be misleading in these circumstances. Effective 1.h.s. mode numbers ze, as defined in
§2, are 1.73 (summer) and 2.9 (winter). The mean (of summer and winter) theoretical L.h.s.
energy flux from table 3 and the above value of @ is 0.07 J cm~!s~%. This value is somewhat below

1t C. Wunsch (private communication) has found an error in this calculation and has obtained a revised
value of 0.4 J cmm~'s~? for this energy flux.
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the above corrected value of Wunsch & Hendry, but the discrepancy is at least partly attribu-
table to their use of velocities near the bottom which are too high to be representative over all
depths. The total (1.h.s. and r.h.s.) mean theoretical energy fluxis 0.19 J cm~!s~!, which indicates
that this area of continental slope is unlikely to make a significant contribution to the global
tidal energy dissipation.

It should be noted that the continental slope profile opposite site D differs significantly from
the one treated here (see Regal & Wunsch 1973, Fig. 4). In particular, there is a definite tangent
point at 230 m depth, and the characteristic and topographic slopes are similar between 200 and
2000m. Under these conditions the generated wave field is very sensitive to changes in s and ¢
(witness the example of this section), and these must be known accurately to calculate the theo-
retical wave field with any confidence. If the internal tide at site D is predominantly generated
at this continental slope, fluctuations in the stratification at the slope could account for the
observed intermittency (see, for example, Magaard & McKee 1973), because of the changing
spatial structure of the generated wave field. The observation that east-west baroclinic velocities
are sometimes greater than north-south ones may be due to the presence of other topography
as suggested by Regal & Wunsch, but an alternative plausible explanation lies in the rotation
of the internal wave fronts from the east-west continental slope by horizontal shear in longer
period motions.

APPENDIX 1. REFLEXION FROM A CONCAVE CORNER

We consider geometry as shown in figure 3 and using the same notation as in Baines (1971)
we consider an incoming plane wave

Y = eelkE—ot) (A1)
and a single back-reflected wave
¥ = ely(E) e, (A2)

since no other characteristic dircction extends to infinity in the fluid. F,(§) must satisfy
i, [ Fa(f)dE
F. () =~p f T2 )% A3
2(g) - ® g . g ( )
The reflecting surface is defined by

n=—Hy(§), £=—-Kg(n) (> 0)>}
n=-Hy), £E=~K,(n) (£<0),

where all four functions are smooth, monotonic and single-valued. Near the origin, where R

(Ad)

is the local radius of curvature, we have, for |{/R| < 1,

2)3
HE = -S e L ogr),
3
K(n) = =sgng 2= ! (1+O(1/R)Y. (A9

Defining the function ¢(§) by
£ > 0:Hy,(4(£)) = Hr(9),

§ < 0:Hy($(£)) = Hi(£), (A6)
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we have
(i) ¢(0) =0, ¢(0)=-1,
(i) ¢(¢(8)) =
(i) @’(§) < 0, for all,
(iv) ¢(€) = —&, if the reflecting surface is symmetric in £.
Ifthe #-motion is written e () e~i¢t the boundary condition ¥ = 0 on the surface gives

etaf 4 Fy(€) +F1(n) = 0, (AT)
when (A 4) is satisfied. As shown by figure 13 this implies
U+ Fy(£) = M0+ Fy((E)). (A5)

From equation (A 3) applied to both Fy(§), Fy(¢(£)) and (A 8) we may deduce

BE) — )] 4pr
Fi®) = GE) +5m [ P gpin| 25250 g, (A9)
where G(E) = —Hei—ethse) - L p [ —e—ké——)_ez(—%f-)) #(8) g (A10)
In the case of topography symmetric in characteristic coordinates, ¢(£) = —£ and
Fy(§) = G(£)
= e~ 1k€, (A11)

regardless otherwise of the shape of the reflecting surface. From equation (A 5) we see that any
smooth surface must be locally symmetric at the tangent point. This implies that, for |¢/R| < 1,
F,(§) = e~ +small contributions from the integrals due to deviation from symmetry where
|£| large,
Fi(n) = 2cosk K(y) + ...

2R
=2(1_(1 1+ OUIRY +.. ) . (A12)
Hence Fin) ~a‘78—% Fy(8) ~ — 2B, (A13)

as the corner is approached, so that the tangential velocity tends to a constant oc R. The total
normal velocity is

%(2(:05/:15) +.o=~2k;sink £+ ...,

so that, to leading order, the velocity locally has a stationary-wave structure, vanishing on the
central characteristic and linearly anti-symmetric about it. Hence there are no singularities in
the motion unless R is very large.
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APPENDIX 2. REFLEXION OF INTERNAL WAVES FROM A YIELDING INTERFACE

We consider a plane internal wave represented by a stream function ¢ incident from below
on an interface at z = 0 above which lies a homogeneous layer of depth d and density p,— Ap. The
incident, transmitted and reflected waves may then be written, in the usual notation

'ﬁI = Ae—i(k1y+wt),
Yr = Bsinh ky(z — d) eltaz—ob), (B1)
QﬁR — Cei(klg-—wt)’

where B and C are complex constants and the free surface at z = dis regarded as rigid. From the
boundary conditions of continuity of vertical velocity and pressure at the interface (see, for

example, Yih (1965) we obtain
A+ C = — Bsinhk,d,

, . 2
B[a)( —-Z—é) (( ——éﬁ) coshkld———l—sinhkld) +Apgk15inhk1d] = -2 (1 “I“z') idfe,, (B2)
w 60 pOw w

Po

where ¢, is the value of c immediately below the interface. If (Ap/p,) < 1 the last equation may be
written

24
=‘“m‘d(1—?’), (B3)
; Apgk, )
here =1ic (cothk d+—=2==,
v L RN o )
so that C= 1—:—7—,A. (B4)
14y

The density change at the bottom of a mixed layer may be regarded as a discontinuity if the
distance over which the density changes is somewhat less than a vertical wavelength. With
¢y = 0.01 this will be the case for waves with horizontal length greater than the order of 100 m,
and with Ap[p, ~ 2.107%, k, = 2xr[L, we have |y| ~ 6.7for L ~ 40km, |y| ~ 62 for L = 200m.
Hence the surface layer can produce some phase change effects on the reflecting wave, but for
present purposes we may take C = — 4 as a reasonable approximation, so that the bottom of
the mixed layer is regarded as rigid.
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